
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 1, JANUARY-JUNE 2025 93

SDT: Cutting Datacenter Tax Through Simultaneous Data-Delivery Threads
Amin Mamandipoor , Huy Dinh Tran , and Mohammad Alian , Member, IEEE

Abstract—Networking is considered a datacenter tax, and hyperscalers
push hard to provide high-performance networking with minimal resource
expenditure. To keep up with the ever-increasing network rates, many CPU
cycles are spent on the networking tax. We make a key observation that
network processing threads can be simultaneously executed on server CPUs
with minimal interference with the application threads. However, utilizing
simultaneous multithreading (SMT) to scale the number of network threads
with the number of application threads suffers from (1) failing to provide
strict tail latency requirements for latency-critical applications, and (2) re-
ducing the number of available hardware threads for application processes,
thus contributing to a high datacenter network tax. In this work, we design,
implement, and evaluate a chip-multiprocessor (CMP) with specialized
Simultaneous Data-delivery Threads (SDT) per physical core. The key
insight is that with judicious partitioning at the architectural level, SDT
can safely co-run with application processes with guaranteed performance
isolation. Our evaluation results, using full-system simulation, show that a
20-core CMP enhanced with SDT reduces the area and power consumption
of a baseline 40-core CMP by 47.5% and 66%, respectively, while reducing
network throughput by less than 10%.

Index Terms—Network, microarchitecture, datacenters.

I. INTRODUCTION

E ND-host networking bandwidth is increasing exponentially in
datacenters. Despite progress in reducing the network software

stack overhead and the deployment of userspace networking, delivering
data from the NIC to application threads still requires a significant num-
ber of CPU cycles. The bandwidth of network data delivery only scales
if more CPU cycles are allocated to the userspace networking software.
As shown in Figure 1, the data delivery bandwidth of DPDK [1], the
state-of-the-art userspace networking framework, scales linearly when
more hardware threads are assigned to the polling mode driver and the
simple layer-2 network function.

Another challenge for high-throughput networking is the amplifica-
tion of on-chip and off-chip data movement during data delivery from
the NIC to the application threads. Direct cache access technologies [2]
are developed to minimize off-chip data movement for data delivery
from I/O devices. However, while I/O data placement in shared caches
can be effective in reducing off-chip data movement, it does not address
on-chip data movement. Previous works aimed at reducing both on-chip
and off-chip data movement for data delivery from the NIC to CPU, but
they only considered run-to-completion network functions [3]. These
works fall short in addressing the complexity of the network data
delivery path, which starts at the NIC, passes through the physical
core running the network thread, and finally reaches the physical core
executing the application logic.

Received 14 October 2024; revised 28 February 2025; accepted 5 March 2025.
Date of publication 11 March 2025; date of current version 2 April 2025. This
work was supported in part by NSF under Grant 2239020 and Grant 2311891 and
in part by ACE, one of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) Program sponsored by DARPA. (Amin Mamandipoor and
Huy Dinh Tran contributed equally to this work.)

Amin Mamandipoor and Huy Dinh Tran are with the University of Kansas,
Lawrence, KS 66045 USA (e-mail: aminm@ku.edu; huydinhtran@ku.edu).

Mohammad Alian is with Cornell University, Ithaca, NY 14850 USA (e-mail:
malian@cornell.edu).

Digital Object Identifier 10.1109/LCA.2025.3549423

Fig. 1. Scaling data network delivery bandwidth requires CPU cycles.

This work sets out to provide free CPU cycles for delivering network
data from the NIC all the way to the core pipelines with minimal
on-chip data movement. To achieve this, we introduce the concept of
Simultaneous Data-delivery Threads (SDT), where each core pipeline
in a Chip Multi-Processor (CMP) adds a minimalist hardware thread
that is exposed to the OS where it can be used for running data-delivery
threads, either in kernel space or userspace networking stacks. The
key insight is that the data-delivery threads — that are responsible for
polling NIC, running interrupt handlers, encapsulating/decapsulating
headers to/from the payload, enqueuing pointers, etc. — sporadically
utilize a fraction of the hardware resources in a beefy out-of-order
superscalar pipeline. SDT leverages this insight to add a minimalist
simultaneous hardware thread to each core and judiciously partition the
physical resources between the data delivery thread and other hardware
threads, minimizing interference while delivering high performance for
both the data delivery thread and co-running application threads.

II. BACKGROUND AND MOTIVATION

Data Delivery vs. Data Processing: We distinguish network data
delivery functionality from data processing functionality. In essence,
data delivery includes receiving packets from the datacenter network,
transferring them to shared NIC-CPU buffers (through a DMA engine),
notifying the CPU of the new packet delivery, and finally executing a
data delivery function on the CPU that fetches received packet headers,
decapsulate them, and copy the data or pass a reference of the received
payloads to a data processing function.

Based on this classification, we can segregate any distributed applica-
tion into two phases: data delivery and data processing. Depending on
the physical core and the timing of execution of the data processing
function after the completion of the data delivery, we can classify
network applications into run-to-completion and pipeline categories.
For simplicity, we consider a userspace networking stack, but the same
classification can be applied to kernel space networking.

1556-6056 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on April 02,2025 at 21:38:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0000-6686-3851
https://orcid.org/0009-0003-7524-929X
https://orcid.org/0000-0002-4622-2181
mailto:aminm@ku.edu
mailto:huydinhtran@ku.edu
mailto:malian@cornell.edu

94 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 1, JANUARY-JUNE 2025

Fig. 2. Overview of (a) run-to-completion and (b) pipeline applications data-
path, (c) iperf’s performance for different NUMA settings.

A run-to-completion application implements a blocking loop on
the data delivery function and immediately calls the data processing
function with pointers to the newly received payloads as input argu-
ments. In a pipeline application, data delivery and data processing
functions run on separate threads and communicate synchronously or
asynchronously. The data delivery and data processing threads can
timeshare a single core or run in parallel on two different cores.
Although executing the functions on separate cores can enable data
delivery and data processing to be performed in parallel, such a pipeline
leads to frequent inter-core data movement.

Fig. 2(a) and (b) illustrate the data delivery path of run-to-completion
and pipeline applications, respectively. After packets are received from
the NIC (➊), the core running the data delivery thread fetches the packet
into its L1 cache for processing (➋). Once the packet is processed by the
data delivery thread, the payload needs to be passed to the data process-
ing thread (➌). In a run-to-completion implementation, this happens
through a simple function call. However, in a pipeline implementation,
the payload is passed through an inter-process communication scheme
to the data processing thread. The data processing thread then completes
the execution of the application (➍) and sends a response back (➎).

A Case for Simultaneous Data Delivery Threads: One of the key
benefits of run-to-completion is eliminating the overhead of inter-core
communication between data delivery and data processing functions.
However, run-to-completion is very restrictive and not scalable, and
except for very simple network functions, a pipeline programming style
is used.

To understand the importance of minimizing data movement be-
tween the data delivery and data processing threads, we set up an
experiment where we pin the data delivery and data processing threads
to different cores with varying distances. We compare the performance
of pinning the data delivery and data processing threads to the same
physical core but different hardware threads, same Sub-NUMA Clusters
(SNCs),1 different SNCs, and different NUMA nodes. As shown in
Fig. 2(c), moving the data delivery and data processing threads to
different SNCs or NUMA nodes results in a performance loss of 13%
and 37.8% in the end-to-end iperf performance, respectively. Sharing
the core between data delivery and processing threads, while beneficial
in minimizing data movement overhead between the threads, results
in a 24% lower throughput compared to using two physically adjacent
cores. This reduction is due to the static partitioning of core pipeline
resources and the contention they introduce.

In this work, we aim to provide an architecture that offers the
performance benefit of run-to-completion but the flexibility of pipeline
implementation. We introduce Simultaneous Data Delivery Threads
(SDT), where we co-locate data delivery and data processing threads
on the same physical core and judiciously partition the physical re-
sources between them to deliver the performance of a run-to-completion
running application with significantly fewer physical resources.

1Sub-NUMA Clustering (SNC) is a feature on some Intel processors that
splits the processor’s memory, cache, and cores into multiple NUMA domains.

TABLE I
GEM5 CONFIGURATION AND DATA-DELIVERY REQUIREMENTS

The insight behind designing SDT is that data delivery threads can
be executed simultaneously with data processing threads with minimal
interference. In the next section, we conduct a design space exploration
to identify the minimal resources required for the data delivery thread
to keep pace with the processing rate of a data processing thread, which
consumes network data as soon as it is received.

III. DEMYSTIFYING NETWORK DATA DELIVERY

In this section, we profile the network data delivery path at the
microarchitectural level and present several key takeaways that inform
the SDT architecture.

Experimental Methodology: We use DPDK l2fwd as a representa-
tive data delivery function, as it has a minimal data processing function
that performs a simple MAC address swap. We consider more complex
protocol processing code to be part of the data processing phase. We
run l2fwd on gem5 [4], utilizing a hardware load generator to stress
l2fwd [5]. The key parameters of the simulated node are detailed in
Table I. We take this baseline architecture, which loosely models a
beefy Intel Xeon Alder Lake CMP, and sweep the size of the key
microarchitectural components, and report data delivery throughput and
tail latency.

Our experimental methodology consists of a two-phase simulation
approach. Initially, we warm up the caches for 2 ms. We then switch to
a detailed out-of-order CPU mode for an additional 4 ms of simulation
time. During this phase, we activate a hardware-based load generator
that injects 8 million 64-byte packets at the maximum rate a single core
can sustain.

Data-Delivery Sensitivity to Microarchitectural Parameters: As
shown in Figure 3, the performance of the data delivery thread is
fairly insensitive to floating point (FloatReg, and floatUnit) and in-
struction supply components (iTLB, and iCache). The reason is the
lack of floating point operations and the small instruction footprint of
the data delivery thread. Although the data delivery performance is
sensitive to the size of other microarchitectural structures, it drastically
under-utilizes those structures. More specifically, we can reduce the
size of key microarchitectural structures by 71% to 97% with less than
10% reduction in the performance of the data delivery thread. The
last column of Table I reports a minimal core configuration for a data
delivery thread to deliver 90% of the throughput of the default beefy
core.

IV. SDT ARCHITECTURE

In Section III, we discussed the significant opportunity to reduce the
resources allocated for data delivery on a CMP. A naive approach to
leverage this insight would be to design a heterogeneous CMP with
dedicated data delivery cores and data processing cores, similar to
big.LITTLE architectures [6]. However, such a heterogeneous archi-
tecture incurs data-movement overhead between the private caches of
the data-delivery and data-processing cores (§II). Additionally, when
network activity is low, the data-delivery cores remain underutilized. In

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on April 02,2025 at 21:38:49 UTC from IEEE Xplore. Restrictions apply.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 1, JANUARY-JUNE 2025 95

Fig. 3. Sensitivity of data delivery thread to size of microarchitectural structures. The horizontal line is the 90% performance watermark.

this work, we present SDT, which enhances regular cores on CMPs with
a simultaneous multi-threading capability that dynamically partitions
core resources between the data delivery and data processing threads
based on network load. SDT minimizes data movement by co-locating
data delivery and data processing threads on the same physical core and
private cache hierarchy.

While traditional SMT implementations often partition on-chip com-
ponents symmetrically between threads [7], this approach is subopti-
mal for data delivery tasks, which typically require fewer resources
compared to data processing threads. When running alongside a low
compute-intensity application, SDT allocates more resources to fulfill
network requirements. Conversely, when paired with a high compute-
intensity application, resources are prioritized for the data processing
thread.

To accommodate varying workload scenarios, we propose a
lightweight mechanism that dynamically adapts resource allocation
between data delivery and data processing threads based on real-time
demands. We partition resources asymmetrically based on each thread’s
actual requirements. The key insight driving our approach is the ability
to significantly reduce the size of key microarchitectural structures for
SDT while maintaining near-optimal performance in data delivery to
the core.

We introduce several asymmetrically partitioned configurations to
leverage the distinct behaviors of data delivery and data processing
threads. These configurations are enabled through a software daemon
controller which dynamically adjusts resource allocation at runtime.
Below, we detail each component of our proposed mechanism:

Microarchitecture: Our mechanism requires minimal modifica-
tions to a baseline SMT core that typically partitions its pipeline
components equally among co-running threads. We extend this model
by providing three additional configurations with asymmetrically sized
partitions. In total, each component supports four configurations,
allowing for more flexible resource allocation.

Resource allocation varies based on computational intensity. In the
Baseline scenario, resources are equally partitioned between threads.
For High Computational Intensity, SDT receives 10% of resources,
with the remainder allocated to data processing. In Medium Intensity
scenarios, SDT’s share increases to 20%. For Low Intensity, SDT
utilizes 40% of resources, with the rest dedicated to data processing.

Our asymmetric configurations are added at processor design time,
building upon existing SMT partitioning mechanisms. For each thread,
we utilize two registers per partitioned structure [8]: a limit register and
a usage register. The limit register defines the maximum number of
entries a thread can occupy, while the usage register tracks the current
allocation. Control logic checks each cycle to ensure the usage doesn’t
exceed the limit, blocking further allocation when they are equal. To
enable our asymmetric partitioning scheme, we make the limit registers

programmable which allows us to dynamically adjust the maximal
occupancy for key structures based on the selected configuration. Our
approach requires one register pair per structure, resulting in negligible
hardware overhead. Importantly, this implementation does not neces-
sitate complex control logic beyond what is already present in baseline
cores supporting equal partitioning.

Software Daemon: To complement our hardware-level resource
management, we developed the SDT daemon, a software component
that controls the resource partitioning between data delivery thread and
main thread by periodically sampling the system performance and ad-
justing the resource partitioning ratios. The daemon periodically moni-
tors system performance and issues resource partitioning commands. To
enable efficient communication between the SDT daemon and hardware
structures, we extended the ISA with a custom Store Resource Partition
(STRP) instruction. This instruction conveys partitioning policies to
specific microarchitectural components. The SDT daemon allows for
flexible implementation of different heuristics based on hardware and
software telemetry to control the partitioning between SDT and data
processing threads. In our work, we demonstrate that a simple heuristic
based on network load is sufficient to deliver near-optimal performance.

Re-partitioning Overhead: The re-partitioning frequency of SDT
daemon is set at 1 ms. To prevent data conflicts and ensure data integrity
— given that existing entries may become invalid due to changes in
resource ownership among threads — it is essential to adopt an effective
pipeline management strategy. We consider two primary approaches:
pipeline flush and pipeline drain.

The pipeline flush method invalidates all in-flight instructions and
immediately resumes execution with the new partitioning scheme. This
approach facilitates a rapid transition, potentially refilling the ROB
and pipeline entries within a few hundreds of cycles, while minimiz-
ing overall re-partitioning penalties by bypassing pending instruction
completions. In contrast, the pipeline drain method halts the fetching
of new instructions, allowing in-flight instructions to complete before
applying the new partitioning. While this method maintains instruc-
tion continuity, it incurs higher overhead, especially when pending
instructions create data flow dependencies on load instructions that
miss in on-chip caches. In our simulations, the pipeline flush and drain
options incur approximately 200 cycles and 1400 cycles of overhead,
respectively. SDT uses the pipeline flush option due to its lower over-
head for re-partitioning. In the worst-case scenario, where the software
daemon re-partitions every 1 ms, the performance overhead introduced
by pipeline flushes is less than 0.001%.

V. EVALUATION

Methodology: We use gem5’s full system mode to evaluate SDT
design outlined in Section IV. The SDT software daemon partitions the

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on April 02,2025 at 21:38:49 UTC from IEEE Xplore. Restrictions apply.

96 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 1, JANUARY-JUNE 2025

Fig. 4. SDT requirements for different levels of compute-intensity applica-
tions.

following key components based on network load: IQ, LQ, SQ, BTB,
ROB, intReg, floatReg, and vecReg. We implemented a DPDK-based
micro-benchmark that models a generic two-phase network application
in pipeline mode: a data delivery thread that operates similarly to the
l2fwd application, and a data processing thread that can be config-
ured with different computational intensities (i.e., the number of CPU
cycles per network byte received). We experiment with three levels of
computational intensities: low, medium, and high, which correspond to
9 Gbps, 4 Gbps, and 500 Mbps of network load per core. The baseline
simulated node is configured with the parameters shown in Table I.

Results: Figure 4 shows the partitioning between the data delivery
thread (running on SDT) and the data processing thread (running
alongside SDT on the same physical core) to maintain at least 90% of the
performance of a beefy core with 2×more resources, evenly partitioned
between the threads. As illustrated, as the compute intensity of the data
processing thread increases, the data delivery rate decreases, and the
core pipeline resources naturally shift from SDT to the data processing
thread.

Across different compute intensity configurations, SDT is assigned
only between 3.6%–35.3% of the total pipeline resources across var-
ious microarchitectural components. Using McPAT [9], we compared
SDT with the baseline, where each thread hugs a full beefy core,
SDT achieves 47.5% area savings and 66% power savings for a chip
multiprocessor with 20 cores, as configured in Table I.

VI. CONCLUSION

This work introduces a novel CMP architecture where each core is
enhanced with Simultaneous Data-delivery Threads (SDT) to reduce
the CPU cycles spent on delivering data from the network to the
processing cores. SDT introduces specialized hardware threads that

utilize a small fraction of the core pipeline resources without interfering
with the main hardware threads executing on the core. By dynamically
partitioning physical resources between data delivery and processing
threads, SDT maintains 90% of the baseline CMP performance, where
an entire physical core is dedicated to data delivery threads. SDT
achieves 47.5% area savings and 66% power savings for a 20-core CMP.
These results demonstrate the potential of specialized simultaneous
hardware threads in the design of next-generation cloud-native CMPs.

ACKNOWLEDGMENT

Any opinions, findings, conclusions, and recommendations ex-
pressed in this material are those of the authors and do not necessarily
reflect those of the sponsors.

REFERENCES

[1] “Inteldata plane development kit,” 2010. [Online]. Available: https://www.
dpdk.org/

[2] “Inteldata direct I/O technology,” 2012. [Online]. Available: https://www.
intel.com/content/www/us/en/io/data-direct-i-o-technology.html

[3] M. Alian et al., “IDIO: Network-driven, inbound network data orchestration
on server processors,” in Proc. IEEE/ACM Int. Symp. Microarchit., 2022,
pp. 480–493.

[4] J. Lowe-Power et al., “The gem5 Simulator: Version 20.0,”
2020, arXiv:2007.03152.

[5] J. Umeike et al., “Userspace networking in gem5,” in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw., 2024, pp. 179–191.

[6] R. Kumar et al., “Single-ISA heterogeneous multi-core architectures: The
potential for processor power reduction,” in Proc. IEEE/ACM Int. Symp.
Microarchit., 2003, pp. 81–92.

[7] M. Taram et al., “SecSMT: Securing SMT processors against contention-
based covert channels,” in Proc. USENIX Secur. Symp., 2022,
pp. 3165–3182.

[8] A. Margaritov et al., “Stretch: Balancing QoS and throughput for colocated
server workloads on SMT cores,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2019, pp. 15–27.

[9] S. Li et al., “McPAT 1.0: An integrated power, area, and timing modeling
framework for multicore architectures,” in Proc. 42nd Annu. IEEE/ACM
Int. Symp. Microarchitecture, 2009, pp. 469–480.

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on April 02,2025 at 21:38:49 UTC from IEEE Xplore. Restrictions apply.

https://www.dpdk.org/
https://www.dpdk.org/
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

